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On Electrodynamics of Uniform
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The theory of electrodynamics exists since more than hundred years and is used
for almost every electromagnetic application. But there still exist debates for
example about the existence of a motional electric field outside current carrying
wires. This essay examines the force between uniform moving charges with
some applications and experiments and shows a request for an additional γ-
factor on the formula for the electric field of a uniform moving charge. Two
possibilities to explain this additional factor are given.
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Introduction

The electrodynamics of moving bodies has motivated EINSTEIN [3] to formulate the theory of
special relativity. He recognizes the all electrodynamic processes underlying principle of rela-
tivity. Not the movement against an aether has to be understood as the cause for electrodynamic
effects but the relative motion between two inertial systems. With his second more fundamental
postulate of the absolute constancy of the velocity of light – independent of the velocity of the
source - EINSTEIN’s theory was able to describe effects with relativistic velocities much better
than previous theories based on aether concepts.

EINSTEIN was the first who recognized that the electric and magnetic forces depends on the
movement of the associated reference frame and that the question about the seat of the electro-
motive force in unipolar induction is therefore meaningless [3]. This can be traced back to
forces between charges only. Generally it must be possible to describe the electromagnetic
theory only as forces between charges only. Some time ago MOON & SPENCER presented a new
electrodynamics without using the magnetic field concept [28]-[30]. This paper is an other
attempt to use a formulation without the magnetic field concept for forces between uniform
moving charges.

A special case, where this forces can be studied, is the motional electric field, first reported
by William HOOPER [21] and later also established by EDWARDS [12] and EDWARDS et. al.
[13]. About a year later BARTLETT and WARD [5] denied the existence of this effect. Frequently
some papers were published about this effect [3] until EDWARDS et. al. [24] changed their
measurement setup and then also claimed, that this motional electric field does not exist. By
examining the experiments cited above and by the existing theoretical foundation the author
believes, that the motional electric field really exists, but the measurement setup greatly influ-
ences the result due to the inductive nature of the motional electric field.
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Forces Between Moving Charges

For the force between charges the following geometry shall be valid:

Figure 1. Geometry of electrodynamics between charges.

In 1846 Wilhelm Eduard WEBER published for the force between moving charges (with
adapted notation) [41]:

22
01

2 2 2
2 0

q 1 d r 1 dr
1 r

q 2 dt4 r c dt

    = + −   πε      

F
r (2.1)
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In 1954 Parry MOON and Domina Eberle SPENCER have presented the equation reprinted be-
low [28], which can be applied to many electrodynamic application.
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with:
F: Force on charge q2 [N]

qi: Electric charge q1 and q2 [As]

v: Relative velocity of charge q1 with respect to q2 [m / s]

a0: Acceleration unit vector of q1 with respect to q2 []

r0: Unit vector of distance from q1 to q2 []

r: Distance from q1 to q2 [m]

θ: Angle between the vectors a0 and v [radiant]

The first term describes the AMPERE law and is addressed to moving charges. The second term
corresponds to the acceleration between charges as it is the case for example with alternating
currents and the third term MOON and SPENCER introduced for time varying charges. If ele-
mentary charges are used for calculation only, the third term reduces to the COULOMB law,
because elementary charges are looked upon as constant in time.

The equation (2.3) has some contradictions, because the force between moving charges is
derived with the principle of “action at a distance”, whereas the force between accelerating
charges deals with a finite signal propagation velocity c. Because of this MOON & SPENCER

introduced the force of a time dependent charge (they called it MAXWELL force). This time
dependent part was needed to describe effects of radiated waves.
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Alfred LIENARD [25] and Emil WIECHERT [43] have deduced the retarded potentials of
charges, from which the general COULOMB-FARADAY law can be derived [18]-a:
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from which the electric LIENARD-WIECHERT field of a charge is
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This equations splits neatly into two parts. The first term depends on the velocity v but not on
the acceleration a of charge q1 and have vector components parallel to r and v, whereas the
second term is proportional to a and the vector direction is always perpendicular to r. This
equation applies also to relativistic velocities.

Forces Between Uniformly Moving Charges

The acceleration terms should now be suppressed. For uniform motion MOON & SPENCER

published a reduced equation [27], which can be applied to induction problems
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This equation, which is also included in WEBER’s equation (2.2), describes all processes using
direct current or uniformly moving charges. MOON and SPENCER have demonstrated [26] that
equation (2.6) is the only possible relation between charges to describe the original equations of
AMPERE [1] correctly. In opposite a huge number of possible equations between current ele-
ments are known (for example GAUSS [16], GRASSMANN [17], NEUMANN [31], HELMHOLTZ

[19], RIEMANN [36], ASPTEN [2]). Because only one equation of forces between charges de-
scribes the phenomenon of induction in opposite to many formulas, which uses current ele-
ments, the formulation with charges is now considered more fundamental than the others. Be-
cause equation (2.6) can not be used for relativistic velocities [27], an adaptation is needed.

The retarded velocity depending part of the LIENARD-WIECHERT field can also be described
as a function of the present position rp at time t. This corresponds to an “action at a distance”
formulation as in equation (2.6). For the present position rp the force between two charges is
[18]-b
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This equation can also be deduced from the electromagnetic field tensor [18]-c. Nevertheless
equation (2.7) can not be transformed into (2.6) without an adaptation. For small velocities
(v « c) equation (2.7) can be decomposed with a Taylor series to
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Actually the first application presented later in this essay with a linear unipolar generator shows
that (2.7) leads to a wrong result. Equation (2.7) can only be used for the force calculation
between moving charges, if the following correction is made:
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The corrected equation for the action at a distance force is
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Force Field Plots of Uniformly Moving Charges with Low Velocities

Despite the fact that with standard induction applications the relative motion between charges is
about one billion times smaller than the speed of light c, the equations (2.7) and (2.10) delivers
fundamental discrepancy when used for calculation of induction processes. For further analyz-
ing we plot the radial velocity depending field of equations (2.7) and (2.6), where the
COULOMB field is subtracted. Then the radial field for the low speeds of v0=c/106 and
v1=c/2⋅106 results in the plots below:

0

30

60

90

120

150

180

210

240

270

300

330

h
n 0,

h
n 1,

θ
n

Figure 2. Radial velocity depending field according to equation (2.7).
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Figure 3. Radial field part according to the WEBER-MOON-SPENCER equation (2.6).

The traditional equation (2.7) shows the same radial field for a slow moving charge as the
WEBER-MOON-SPENCER equation (2.6), with the exception, that it is rotated for exactly π/2.
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Applications

Unipolar Induction Generator – Linear Type

This example has been presented by MOON & SPENCER [29]. It should again be used to verify
the traditional equation (2.7) against the new equation (2.10). In this experiment a metal plate is
moving along an endless (for simplification) current carrying wire. Then in this metal plate a
voltage V is induced in inverse y-direction according to figure 4.

Figure 4. Unipolar induction on uniform moving plate along a current carrying wire.

FARADAY’s equation E = v × B delivers the value:
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Now figure 5 applies for an observer resting with the charge q1
+.

Figure 5. Force between moving charges in an atomic “cell” of two conductors.

MOON & SPENCER have shown [27] that equation (2.6) leads to the result
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The direction of the resulting electric field E is opposite to the force acting on the negative
charge q2

- and points therefore in the negative direction of y0. The finally detected voltage V on
a voltmeter follows from integration of all field parts along the y direction:
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This is identical to (3.1). Beneath the force on q2
- there acts also an equal but opposite force on

the fixed ions q2
+ in point P. This means that on the moving plate a force acts toward the current

carrying wire. When a current is flowing though the moving plate along the y direction, the
forces on the negative and positive charges in the plate are not balanced so that it is expected to
find a weak force on the moving plate. With the setup of normally done measurements – where
the moving plate has to be fixed somehow against the current wire - this force may be to week
to catch the attention of the experimenters.

Now we check the traditional equation (2.7) for application to this problem. The velocity
terms with higher order than β2 are suppressed for simplicity. Then it is:
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Again figure 5 applies. Then the electric field calculates:
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With v1 « v2 it follows for the force acting on q2
-:
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The negative charge q2
- experienced no force so the electric field is interpreted to be zero. The

traditional equation (2.7) leads to the wrong result.
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AMPERE’s Force Law

This example describes a setup with the electron drift velocity v1 only according to figure 6.

Figure 6. Geometry of force between two parallel wires

The force between two parallel conductors of the length l is known as AMPERE’s force law:
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Applying (2.6) the force between the charges is:
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The force on conductor 2 is given with the sum of all forces acting on the charges q2
+ and q2

-:
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The expansion from the conductor cell with the cross section A1 and the electron density N1

leads to the force on a current element of length dξ:
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With integration over the wire length 1 the force on the current element Idξ2 can be derived as
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whereas follows immediately the AMPÈRE force law (3.10). If instead of (2.6) the equation
(2.8) would be applied, again the result would be a zero force.
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Motional Electric Field

A special case, where the radial force field of two current carrying wires with opposite currents
can be studied is an arrangement according to figure 7. It refers to the motional electric field,
first reported by William HOOPER [21]-[23] in 1969.

For two very close arranged conductors, which carries the same current but in opposite di-
rection, it is I1 = -I2 and approximately y1 = y2, so that on first glance one supposes, there exists
no magnetic field B and also no vector potential field A. Therefore an external charge q3 should
not experience a force due to the currents. ASSIS et. al. [4] have shown, that this is not correct.
And besides of the motional electric field there exists also a force proportional to the current,
which should not be considered here in more detail.

Figure 7. Geometry of Motional Electric Field force

With (2.6) and with the same calculation method as before the force on q3 becomes
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The same equation was published by ASSIS [3] and WESLEY [42]. The result fits nicely to the
experiment of HOOPER. The motional electric field E is oriented centripetal to the two wires. It
is very important to note here, that under any circumstances this force can not be shielded.
HOOPER concludes therefore, that this force corresponds to the gravitational force and delivered
a rough calculation of the attracting force between two hydrogen atoms [20].

This impossibility to shield the radial electrical force field of every current carrying wire is
valid for almost all known arrangements, that means for ordinary coils as well as for caduceus
coils. In comparison with the other forces of an ordinary coil on an external charge, this force of
the motional electric field is extremely small, what could be the reason that it is not well known.
For example a current of 5000 A gives at a distance of 10cm to the wires according to figure 9
and with a drift velocity of about 1cm/s an electric field strength of about 50µV/m. Such small
fields usually are not measured with ordinary induction measurement equipment.

It my be of special interest, that living organisms can react to fields of an even smaller am-
plitude as it has been shown by the experiments of Glen REIN with bacteria exposed in a field of
a caduceus coil [34], [35]. The discussion about the influence of electric fields to living organ-
isms is illuminated in another way. So even in a region, where ordinary measurements shows
that no electric or magnetic fields are active, this very small and even not detected remaining
fields still are able to influence biological processes.
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The SANSBURY Experiment

The force direction of the motional electric field depends not on the direction of the current
but on the polarity of the test charge q3. SANSBURY [37] has confirmed this behaviour in an
experiment. In this experiment a charged torque bar was placed close to a current carrying
conductor as shown in figure 8.

Figure 8. Geometry of the SANSBURY experiment.

The silver foil was charged with an adjustable ±3kV source against the current loop. To
initialise the experiment, the silver foil was charged against the wire carrying no current, so that
the torque pendulum stabilised its initial position shown in figure 8. Then the current was set to
900A what forces the torque pendulum to move. Now the SANSBURY experiment shows the
opposite sign than equation (3.13), that is, the negative charged foil was attracted to the current-
carrying conductor instead of repelled.

A suggestion, what probably can be the cause for this, is the movement of the midpoint of
the torque bar shown in figure 8. According to the calculation given in Appendix A there exists
the following force distribution along the y-axis:

Figure 9. Force Fx(y) of current loop on torque bar
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It shows, that at the position, where the silver foil is located (y~0), the force on a positive test
charge acts in the negative x-direction toward the current loop, but at the position y = 7cm of
the midpoint of the torque pendulum, the force is in the positive x-direction. This positive force
at y = 7 cm is even higher than shown in figure 9, because the current loop acts on the charged
72 cm long suspension wire, too.

The charge densities along the copper suspension and the silver foil is not known, so it is
difficult to calculate the total momentum on the pendulum. SANSBURY has noticed a high insta-
bility of the measurement when the current is set on, what doesn’t enable to make precise read-
ings (it was, for example, not possible to measure the angular deflection of the torque bar as a
function of the current intensity). This instability can be explained with the force characteristic
on the torque bar shown in figure 9 as well as on the forces on the suspension wire.

The EDWARDS Experiments

In 1974 EDWARDS [12] reported an electric field due to conduction current in a supercon-
ducting coil. Two years later Edwards et al. [12] measured a motional electric field proportional
to I2 with high accuracy. About a year later BARTLETT et al. [5] denied the EDWARDS effect
partly based on the measurements with a spinning coil. Finally in 1991 LEMON et al. [24]
changed their measurement set-up previously used to demonstrate the EDWARDS effect and
reported then a negative result also. So what happened?

It is important that the motional electric field is not an electrostatic field but merely an in-
duced field. The circulation along a closed path in the vicinity of a uniform moving charge is
not always zero (PURCELL [33]), as can be seen for example from figure 2 and 3. For an infinite
long, straight current carrying wire the following scheme applies:

Figure 10. Different cases for an induced Motional Electric Field

The HOOPER experiment is exactly case 1b) of figure 10. The experimental set-up of
EDWARDS et al. is close to case 1a). The signal lead and the support tube to the electrometer
corresponds definitively to case 1a). Because the superconducting wire is not straight but
winded along a ring, different supply wire positions relative to the superconducting coil experi-
ence a different motional electric field. And this is the case inside the brass shield of the coil
assembly. So the outcome of the experiment depends on the supply wire and shield positions
relative to the superconducting coil. And exactly in this region EDWARDS et al. have changed
the set-up between their two publications [13] and [24]. This could be an explanation why in
earlier runs they measured a signal proportional to I2 and at later runs not.
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The BARTLETT Experiment

The experimental set-up of BARTLETT and WARD [5] corresponds at first glance to case 4b)
of figure 10. But again the moving current wire is not straight and therefore the motional elec-
tric field depends on the position of a test charge around the spinning coil. Generally rot E is
not zero around every closed path between the two shells so that for example not every part of a
sphere will contain the same charge density. In this radial direction, in which the motional
electric field induction is a maximum, also the local charge density on a sphere is a maximum.
In the radial direction the motional electric field decreases with 1/r, so that a charge density on
the inner sphere at a given radial direction is reduced by 1/r on the outer sphere. That means,
for a radial direction a charge density difference should be detectable. But in the signal line
from the inner sphere to the lock-in amplifier an e.m.f. will be induced too, which corresponds
to the local radial potential between the inner and outer spheres and therefore cancels the meas-
uring value out. The measured value is about zero, as reported by BARTLETT and WARD.

BARTLETT and WARD gave some other tests about the charge’s dependency of its velocity
which uses accelerated charges inside atoms. This seems problematic because it is well known
that an electron bound to an atomic nucleus does not “move” around an orbit but merely has is
state defined by quantum mechanics.

About the Correction Factor γγ

As shown with equation (2.9) the correction factor γ must be applied to the LIENARD-
WIECHERT field to make it usable for induction phenomena. The question arises, what does this
additional factor γ mean. It seems as if at this point a decision between at least two possibilities
can be done. A decision with the special relativity in mind argues, that only the momentum is
conserved but the forces are not an invariant; they are transformed with the factor γ (for exam-
ple FEYNMAN [15]). The reason is the relative moving “point” charge, which is actually a
charge density ρ. Because of the LORENTZ-contraction the charge density must be transformed
according to

 0

21

ρ
ρ =

− β
 . (4.1)

Then equation (2.9) could be seen as another proof for the length-contraction. But a decision
without considering special relativity is also possible. It is noteworthy to say that the derivation
of the electric LIENARD-WIECHERT field does not need the LORENTZ transformation at all. So in
a straight forward manner one might assume, that the charge itself is not conserved:
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q
q

1
=

− β
 . (4.2)

EDWARDS et. al mentioned the possibility [13], that Maxwell’s theory still holds, when one
assume, that the charge of a moving particle is not conserved. Let us for the next section con-
sider, the charge is not conserved.
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Extended interpretation of the four-vector velocity

Recently in this journal Yong-Gwan YI has shown [44], that “either the time dilation or the
four-velocity, not both of them, can be consistent with experimental observation. This means,
that the time dilatation and the four-velocity are alternatives, so that the four-velocity cannot
result from the Lorentz time dilation.”

Yi has shown, that the relativity effect is just an effect due to the measurement velocity be-
ing affected by velocity of a moving body. According to this the four-vector velocity is not due
to time dilation but due to the aberration effect. So the effective relative velocity between two
bodies is

2

2

v
1

c

=

−

v
u (4.3)

which for v < c is always higher than the measured velocity v. Interestingly the effective veloc-
ity u is used for the derivation of the relativistic momentum of a moving mass and leads to the
definition of the relativistic mass. So why not using this velocity also for a moving charge?

This new interpretation of u gives the same results as the traditional one. An example is
given with the deflection of cathode (electron) rays, as it has been done in 1897 by Joseph John
THOMSON [37], what has lead him to the discovery of the corpuscular nature of electricity. In
this experiment electrons are accelerated in a vacuum tube with a high voltage VA. After accel-
eration the electrons pass a normal electric and/or magnetic field, which causes the deflection of
the electron beam. As long as the ratio q/me is constant, the deflection depends linear on the
accelerating voltage, when the normal electric and magnetic field are hold constant. But the
experiment shows that when the electrons reach relativistic velocities close to the speed of light,
the deflection can not be increased anymore with higher accelerating voltages.

In special relativity this is explained with the increase of the electron’s rest mass me0 when it
reaches relativistic velocities. It is:

2
2e0

A2 2
e0 A

m1 q 1 v 1
v qV

2 m 2 V1 1
= → =

− β − β
(4.4)

When the velocity u is used, the same result is obtained for a velocity-depending charge. It is:
2 2

0 0
e A2 2 2

e A

q q1 v 1 v 1
m V

2 m 2 V1 1 1
= → =

− β − β − β
(4.5)

The new interpretation of the velocity dependence of electric charge and of the effective rela-
tive velocity leads to the same result as the traditional method with velocity depending mass.
This applies also to the mass spectroscopy, where the ratio q/m is measured. The apparent
increase of mass is the subjective interpretation of the increase of charge and it’s velocity.

Obviously the second interpretation was used by Nikola TESLA, as he stated in a late inter-
view in 1937 [32]: »It might be remarked parenthetically that Dr. TESLA does not accept the
concept of the electron presented by physicists as an elementary unit and carrying a unit charge
of electricity. He holds that the electron in a well-exhausted tube operated at high potential
carries many multiples of this unit charge. The ignorance of this fact is responsible for many
errors and fallacies in various scientific investigations.«
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Other Applications

The Biefeld-Brown Effect (Hypothesis)

Around the year 1920 Thomas Townsend BROWN and his mentor Dr. P.A. BIEFELD have exer-
cised with free hanging capacitors. With experiments with electron ray tubes BROWN has dis-
covered, that each time he deflected the electron beam between two conducting plates with a
strong electric field, a small but detectable force appeared. For further investigations Brown
constructed several types of capacitor arrangements. He discovered that a capacitor stressed
with a high voltage tended to accelerate against the direction of the electric field lines. BROWN

tested his experiments in air, oil and even in vacuum, but the capacitor always shows the same
behavior (but with different magnitude) independent of the surrounding medium. Finally his
work led BROWN to the application of several patents [6]-[10]. The force on the capacitor de-
pends on the following points:

1) proportional to the applied DC voltage
2) proportional to the current between the electrodes
3) reverse proportional to the square of the distance between the electrodes
4) proportional to the product of the electrode masses
5) Week seasonal dependency to day and month cycles (Sun- and Moon position)

The items 1-3 points on an electrodynamic cause between relatively moving charges, the
items 4 and 5 are not covered with the presented theory herein and its treatment should be put
back for the moment. Extremely important is BROWN‘s reported behavior 2, which is probably
not widely known, but which has been confirmed by the author with some simple experiments.
The have a force on the capacitor arrangement, it is obviously necessary, that the current does
not drop to zero. For a further analysis a refer to figure 11.

Figure 11: Biefeld-Brown Effect shown with two oppositely charged balls

With the knowledge of the preceding examples it is easily understandable, that the moving
charges in the supply wires as well as in the ‚free flight path‘ between the charged balls Q+ and
Q- examine forces to the remaining positive ions in the balls. Because of the high voltages (the
voltages are in the range of 30kV...300kV) it is expected that the velocity va is substantial
higher than the velocity vw in the conductors, so that vw can be neglected. In addition va is not
constant. Because of the electric field an electron q- will be continuously accelerated away form
Q- towards Q+.
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In the previous examples the cause for the movement of the charges in a wire (i.e. a voltage
source or an external electric field) was not taken into consideration to calculate the forces. For
the first time the causing charge is now also this charge, on which the force must be calculated
in this experiment. Because of this the COULOMB field will again not be taken into calculation
but only the force depending on the relative movement of the charges.

A moving electron q- with an „average“ velocity av (the influence of the acceleration

should now be neglected) causes at the mean distance r = r+ = r- the velocity depending force F+

on the positive charge Q+:
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A force with the same magnitude but in opposite direction effects also to the electron q-. On the
charged ball Q- an analogue force is applied:
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There is again a reaction force in opposite direction to the electron q-. The total force on the
capacitor construction with the balls Q+ and Q- is the sum of both above forces:
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As a result the whole composition moves in the direction from the negative ball to the positive
charged ball. This is confirmed by the experiment.

The reaction forces to the moving electron reduces its acceleration, which will become zero
for v = c. For v = c the reaction force is exactly equal to the causing force originating from the
relative movement between the ‘free’ electron and the charged balls Q.

BROWN’s first three statements can be justified qualitatively:
1) proportional to the applied DC voltage: The higher the voltage U, the higher is the

stored charge in Q+ and Q-, and the higher is the resulting force.
2) proportional to the supply current (Leakage current): The more electrons are in-

volved, the higher is the resulting force.
3) inverse proportional to the square of the distance between the balls: This relation can

be found in the equation (5.3).

Usually this experiment is explained with the movement of the surrounding, ionized air. But
this argument can not explain why the composition always shows a distinct higher force when
the voltage is switched on (i.e. when the current has its maximum). In addition this argument
does not explain why the experiment works in vacuum also.

The asymmetries Brown used in his apparatus for the shape of the anode and cathode can
be explained, when the acceleration depending forces are also taken into consideration (which
are not subject to this paper). With a view to some pictures in Brown’s patents (for example [7]:
figures1,5,6) it is evident that the resulting force can be optimized when the cross-section of the
anode Q+ is made very small. For this reason Brown mostly used simply wires instead of other
forms for the anode. Then the angle φ between the velocity vector a and r is always close to
zero and the force between the charges is not reduced by the acceleration depending force part.
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 With the still used assumption that with a normal experimental setup for the Biefeld-Brown
effect no relativistic speeds are involved, the explanation for the first three points can be re-
garded as completed. But totally open is the reported counteraction with the gravitational force
(points 4 and 5). The speculation should be allowed here, that gravity is finally also a force
between charges only, so that an interaction between gravity and electric fields seems possible.
An other indication that an interaction between inertia and electric fields exists is given by
Erwin SAXL[38],[39] with his very high precision measurements with a torsion pendulum inside
an electric charged FARADAY cage. This is very interesting for further investigations.

From this hypothetical explanation to the BIEFELD-BROWN-Effect two new experimental
proposals can be formulated. Usually high voltage sources does not allow to have high currents
also, so it is difficult to have both properties within one source. Therefore two sources should
be used. The high voltage circuit U1 is used as usually done in the Brown experiments. A sec-
ond current source U2 is designed in such a way, that it is able to deliver a high current between
the two charged poles Q+ and Q-. For safety reason and one end of each source are electrically
conneted, the other poles not, of course:

Figure 12: (left) and 13 (right): Two experiment proposals to increase the BIEFELD-
BROWN Effect

The conductor “Leiterstrecke” should be able to transport a huge number of charges (electrons)
with a maximum high velocity. A superconductor or an electron tube would be excellent. With
a normal conductor there are many free charges available but the mean drift velocity is very
small. So when using a normal conductor the current must be increased which needs a higher
conductor cross section and minimizes the possibility to observe the effect due to the higher
weight of the total arrangement.
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Conclusions

The presented examples of electrodynamic applications with uniform moving charges have
shown, that a second-order electric force field around conductors exists. Because this field does
not behave like a static field but more like an induced field, it is somewhat difficult to measure.

The electric LIENARD-WIECHERT field needs a correction factor γ when it is applied to in-
duction. It was shown, that there exist at least two alternative explanations for this correction. In
the traditional description the charge is invariant, the mass not and the four-vector velocity has
no significance. In the other proposed description all the opposite may be valid, that is, the mass
is invariant, the charge is not and the four-vector velocity is of a real physical significance.

Everything other than relative uniform motion was not considered and must be done in an
other paper. Especially the forces between accelerating charges needs some further work to be
done in the object of the second interpretation of the effective velocity.
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Appendix A

The force in x-direction on the torque bar of the SANSBURY experiment [37] is calculated with
the geometry of figure 12.

Figure 12: Geometry of the SANSBURY Experiment

For the wire element AB the force on the torque bar is:
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For the wire element BC the force on the torque bar is:
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And finally for the wire element CD the force on the torque bar is:
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The total force Fx(y) in x-direction on the torque bar is then the sum of the three wire element
forces. This total force is shown in figure 10.


